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Abstract

Visual understanding goes well beyond the study of im-
ages or videos on the web. To achieve complex tasks in
volatile situations, the human can deeply understand the en-
vironment, quickly perceive events happening around, and
continuously track objects’ state changes, which are still
challenging for current AI systems. To equip AI system
with the ability to understand dynamic ENVironments, we
build a video Question Answering dataset named Env-QA.
Env-QA contains 23K egocentric videos, where each video
is composed of a series of events about exploring and in-
teracting in the environment. It also provides 85K ques-
tions to evaluate the ability of understanding the composi-
tion, layout, and state changes of the environment presented
by the events in videos. Moreover, we propose a video QA
model, Temporal Segmentation and Event Attention network
(TSEA), which introduces event-level video representation
and corresponding attention mechanisms to better extract
environment information and answer questions. Compre-
hensive experiments demonstrate the effectiveness of our
framework and show the formidable challenges of Env-QA
in terms of long-term state tracking, multi-event temporal
reasoning and event counting, etc.

1. Introduction
In the last decades, tremendous works [9, 30, 45, 17, 58,

10, 49] have brought revolutionary advancements to com-
puter vision systems for understanding web data, e.g., pho-
tos, videos, and movies, while for deploying machines in
the human living environment (i.e., building embodied arti-
ficial intelligence), we will encounter brand new challenges
on visual ability. 1) From “broader” to “deeper” visual un-
derstanding. The studies of internet AI focus on making the
system recognize from dozens of object categories [29, 34]
to thousands of categories [9, 43, 19] (broader). How-
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Figure 1. Env-QA dataset contains egocentric videos about explor-
ing and interacting with environments, and diverse questions to
evaluate the models of understanding dynamic environments from
various perspectives.

ever, internet AI mainly pays attention to the salient objects
shown in the images. For completing tasks in real world
environment, such as cooking a meal, a system needs an
in-depth understanding of every detail of the environment
(deeper), e.g., knowing the positions of all utensils and in-
gredients in a kitchen. 2) From static to dynamic visual un-
derstanding. One of the essential characteristics of the real
world environment lies in its dynamic nature. The interac-
tions between a human and the environment will trigger the
environment’s state changes. A system must learn to sense
and remember state changes to accomplish some long-term
tasks, e.g., a housekeeping robot may need to continuously
track the state of objects at home to plan the cleaning task.

However, few works purely study these visual abili-
ties under embodied AI setting. Some of the video QA
datasets, such as TVQA [32] and MovieQA [49], evaluate
the model’s understanding of movies, TV series or YouTube
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Table 1. Comparison of Env-QA with other related video QA and embodied QA datasets. The table shows the basic information of the
modalities involved in the existing datasets. The content in brackets shows the main characteristic of the visual material.

Dataset Vision Language Action #Clips #QA
Object-Centric Interaction Human-Centric Action

MovieQA [49] - Movie (Plot) Question+Subtitle+Script - 6.8K 6.5K
TGIF-QA [22] - Social Media (Action) Question - 56.7K 103.9K
TVQA [32] - TV Show (Plot) Question+Subtitle - 21.8K 152.5K
TVQA+ [33] - TV Show (Plot) Question+Subtitle - 4.2K 29.4K
Social-IQ [59] - YouTube (Social Situation) Question+Transcript+Audio - 1.2K 7.5K
CLEVERER [57] Synthetic Video (Object Collision) - Question - 10.0K 305.0K
Embodied QA [8] AI Habitat (Static Env.) - Question Navigation - 1.1K
Interactive QA [14] AI2-THOR (Nearly Static Env.) - Question Navigation+Manipulation - 75.0K

Env-QA (Ours) AI2-THOR (Dynamic Env.) - Question - 23.3K 85.1K

videos. In Table 1, we display the main characteristics of
the related datasets. Although these tasks explore the dy-
namics of vision, they focus more on the dynamics intro-
duced by human-centered actions, social activities, or plot
development, rather than the interaction with environments.
Correspondingly, these tasks mainly require the abilities of
human posture recognition, dialogue understanding, and so-
cial knowledge understanding. Although some other related
tasks, such as Visual Navigation and Manipulation [61, 48],
and Embodied QA [8, 14], involve the understanding of the
environment, they focus more on the comprehensive ability
of how to plan actions in the environment. The visual ability
of environment understanding is implicitly evaluated by the
quality of performed actions. Besides, these tasks usually
require models to perform in a nearly static environment, so
they are also hard to investigate the dynamics of environ-
ments.

Thus, we propose to take the question answering as a
proxy task to purely study the dynamic environments under-
standing. The task is required to watch an egocentric video
composed of a series of events about exploring and inter-
acting in the environment, e.g., move the pot, turn on the
faucet, as shown in Figure 1. It must then answer a question
that requires 1) understanding the environment’s composi-
tion (like Q1), layout, trajectory of state changes (like Q2)
presented by the events, or 2) performing temporal reason-
ing on events (like Q3 and Q4).

To support such a task, we construct a large-scale dataset,
Env-QA, containing 23.3K videos and 85.1K questions. A
critical challenge in building a dataset of this scale is how to
control the distribution of samples. Most recent QA datasets
with off-the-shelf visual materials from Internet contain un-
expected biases [24, 1]. These biases could be more dis-
tinct for housework in natural scenes, like cooking, leading
to high risks for models to guess the answer without even
looking at the visual materials. To address this challenge,
we resort to the recently proposed virtual simulator AI2-
THOR [27] to generate videos with strictly controlled con-
tent by ourselves. Specifically, we design a semi-automatic
data collection method. Our designed algorithm is responsi-
ble for controlling the sample distribution and automatically

generating natural language guidance information. Then,
annotators follow the guidance to manipulate in the simula-
tor to generate videos and collect question-answer pairs.

Understanding the dynamic environments from a se-
quence of interaction events requires extracting key envi-
ronmental information from the events and performing tem-
poral reasoning to capture state changes. And the founda-
tion of both abilities is to represent the video at the level
of events, that is dividing the video into clips according to
its content to let the model locate key events easier. How-
ever, the previous video QA methods [21, 33] mainly use
the grid-level video features with a preset interval extracted
by temporal CNN [50, 23]. To address this problem, we
introduce Temporal Segmentation and Event Attention net-
work (TSEA), which will first segment the video to flexi-
ble duration clips based on the content, then perform multi-
step temporal reasoning to locate the key events for a given
question and output the answer. Experiments on Env-QA
demonstrate the effectiveness of our proposed method and
reveal that Env-QA is challenging in terms of capturing
the long-term state change, multi-event temporal reasoning,
and event counting, etc.

2. Related Work

2.1. Embodied AI Tasks

In the 1990s, [51, 11] put forward the concept of em-
bodied cognition and embodied artificial intelligence, and
emphasize the importance of a body in cognitive learn-
ing. In recent years, many pioneer works spend great ef-
forts in building powerful virtual environment simulators
that can be explored and interacted for embodied AI re-
searches, e.g., Matterport 3D [6], AI2-THOR [27], Virtu-
alHome [40], AI Habitat [46] and UnrealCV [41, 42]. Re-
searchers also propose corresponding embodied AI tasks,
e.g., object navigation, vision-language navigation, vision-
language manipulation, embodied QA, and rearrangement.
Object navigation task [61] requires exploring in the en-
vironment to find the specified object, which evaluates
the ability to make decisions based on the egocentric vi-
sual observations [55, 54, 47]. Vision-language navigation
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task [3, 7, 52] requires models to act in the environment
according to natural language instructions. This type of
works [12, 55, 25, 16, 28, 52, 53, 18, 18, 37] mainly studies
the comprehensive ability of vision-language-action, e.g.,
interpreting natural language instructions into specific move
actions [12]. [48] proposes a more challenging task, AL-
FRED, which additionally requires the model to achieve
complex manipulations based on detailed instructions. Em-
bodied question answering [8, 14] requires models to ex-
plore in the environment [8] and manipulate objects [14],
e.g., open a refrigerator to find the object asked by the
question, and answer the question about object attribute.
Rearrangment [5] is a recently proposed high-level cogni-
tion task that requires manipulating objects to make a given
physical environment into a specified state.

Previous embodied AI tasks mainly evaluate the com-
prehensive capabilities of vision and action, so it is hard to
purely diagnose the vision ability. Besides, these planning
tasks usually only require to make action decision based on
the current environment state, so it is hard to investigate the
dynamics of environments. Thus, Env-QA collects egocen-
tric videos with diverse events to purely study the visual
challenges, and introduces new types of questions to evalu-
ate the understanding of the whole trajectory of environment
state changes. More illustrations are in Supplementary.

2.2. Video QA Tasks

With the development of image question answering [4,
15, 35], many works in recent years begin to study video
question answering tasks [49, 22, 36, 26, 38, 59, 57]. One
of the early tasks, TGIF-QA [22] proposes to answer ques-
tions about short videos (e.g., GIF images). This task ex-
amines the model’s understanding of short-term actions,
such as recognizing actions, count actions. Another type
of tasks [33, 32] queries the content of movies or televi-
sion series. The main characteristic of these tasks is the
requirement of understanding human-centric plots, e.g., un-
derstanding subtitles and more advanced background com-
mon sense. The recent CLEVERER dataset [57] uses the
renderer to construct videos containing a series of object
collision events. This task’s core difficulty lies in the rea-
soning of causality, e.g., which collision event caused an-
other collision event.

Although the visual samples in existing video QA
datasets, e.g., film, TV series, involve many scenes, most
of the periods in these videos do not focus on the environ-
ments. Besides, most of the questions examine the under-
standing of human actions, dialogues, and social conven-
tions. In contrast, our collected videos are all about ex-
ploring and interacting in the environments, and proposed
questions evaluate the ability of dynamic environment un-
derstanding from diverse perspectives.

2.3. Video Representation and Temporal Reasoning

Early works [50, 23] extend 2D convolution to 3D con-
volution, which uses similar mechanisms to deal with tem-
poral and spatial dimensions. [10] argues that the process-
ing mechanism of temporal and spatial dimensions should
be different. Thus, it proposes a two-way mechanism to
capture appearance information and motion information
separately. These video representation methods are mainly
for single-action video recognition tasks. For tasks that re-
quire temporal reasoning, e.g., action localization, video
caption, or video QA, the model requires a spatio-temporal
attention mechanism to represent multi-action videos’ key
content. [60, 33] propose frame-level temporal attention
and region-level spatial attention mechanism to locate the
video’s key content according to a natural language query
and then achieve video captioning or question answering.
Another video QA work [13] proposes to use memory net-
works to conduct spatio-temporal attention mechanisms. To
achieve better event reasoning capabilities, [31] proposes
to divide a video into equal length clips, then hierarchically
extract the features of frames, clips, and entire video.

The existing video representation methods mainly ex-
tract grid-level features with a preset interval in the tem-
poral dimension, e.g., the features of each frame [60, 33],
or the clip features [31]. In contrast, for better perform-
ing multi-event temporal reasoning in Env-QA, we propose
an event-level video representation that segments the video
into clips according to its content.

3. Dataset Construction
This section describes how we collect videos and

question-answer pairs for Env-QA dataset with both diverse
content and controllable distribution. We design a semi-
automatic construction method to collect samples with AI2-
THOR [27] simulator, as shown in Figure 2. The key issue
is to control the sample distribution and automatically gen-
erate natural language guidance; then, annotators follow the
guidance to manipulate the simulator to generate videos and
collect QA pairs.

3.1. Video Collection

Env-QA uses the recently released AI2-THOR simulator
to collect egocentric videos about exploring and interacting
in the environment. AI2-THOR provides four categories,
a total of 120 indoor simulation environments, including
kitchen, living room, bedroom, and bathroom. These envi-
ronments contain 115 types of objects and support multiple
types of interactive operations, such as turning on, throw-
ing, etc.

For Env-QA dataset, a total of 15 types of basic actions
are defined, as shown in Figure 2 (Note that, Tidying one
object is defined as moving all objects out of this object.).
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Figure 2. Pipeline of proposed semi-automatic construction of Env-QA dataset. The algorithms in the pipeline are responsible for generating
auxiliary annotations, e.g., instructions and candidate questions, for guiding annotators to control the distribution and difficulty of samples.
The annotators are responsible for collecting the videos and QA pairs to ensure the samples’ naturalness and correctness.

Given objects that exist in a virtual environment, the algo-
rithm will generate all executable legal events in the envi-
ronment. Then, we design five types of videos, exploring,
random, object-centric, action-centric, and comprehensive
task, to evaluate different abilities of models, as shown in
Figure 3 (a). Collecting exploring-type videos require anno-
tators to walk in the environment to find some specified ob-
jects. This type of videos aims to examine the model’s abil-
ity to understand static environments. Random type videos
contain a series of completely random events in the envi-
ronment, mainly examining the model’s ability to recognize
events and temporal reasoning. Object-centric videos con-
tain a series of events surrounding some selected objects.
This type of videos mainly examines the model’s ability
to track the objects’ state. The action-centric videos con-
tain events with similar actions for measuring the ability of
event counting. The comprehensive task videos are about
accomplishing complex daily life tasks, e.g., heating pota-
toes, washing a pot. This type of videos examines the un-
derstanding of complex events in daily human life. For col-
lecting one specific type of videos, we design a sampler to
automatically sample some actions from all legal events un-
der specific constraints to generate the instruction, as shown
in Figure 2 and 3 (b). Finally, the annotators manipulate
the environments in our developed web-based AI2-THOR
annotation platform according to the provided instructions.
The platform will record the video and environment meta-
data, including the depth map, the instance segmentation
map, and the environment metadata (the objects’ pose and
state). Through the above method, we collect 4,720 long-
time videos, each of which mainly contains about 5 to 10
events. The video type distribution of these videos is shown
in Figure 3 (a). These long-time videos can evaluate the
model’s ability to track volatile environment state changes.
To also provide some simpler samples to test the under-
standing of short-term changes, we split part of the videos
into shorter videos mainly containing about 1 to 4 events.
Finally, we collect 23,261 videos of varying lengths in to-

tal, which evenly cover the four categories of environments.

3.2. Question Collection

After collecting the videos, we first design a template-
based question generator to output the balanced candidate
questions according to the instructions. Specifically, Env-
QA defines five types of questions to evaluate dynamic en-
vironment understanding from different aspects, including
querying object Attribute, object State, Event, temporal Or-
der of events, and counting Number of events or objects. In
Figure 3 (c) and (d), we display each type of questions and
examples. Then, for each type of questions, we collect a
set of question templates, e.g., where is the <Object1>,
before <Event1>?, is the <Object1> closed, at the
end of video?. The generator will automatically fill in the
blanks according to the instructions. The generated ques-
tions then feed into a filter to balance the answer distribu-
tion. Finally, the annotators rephrase, modify and check
the auto-generated questions based on the video content to
ensure questions’ diversity and accuracy, and annotate the
answers.

3.3. Dataset Statistics

Env-QA collects a total of 23,261 egocentric videos,
85,072 question-answer pairs and rich annotations of the
videos, such as instance segmentation map, depth map, en-
vironment metadata1. These samples are divided into three
splits, train (70% of samples), validation (15%), and test
(15%) split, where 60% of videos in validation and test split
are recorded in new environments which do not appear in
the train split to evaluate the cross-environment generaliza-
tion performance of models. The average video duration is
about 20 seconds. Moreover, we downsample the videos
by extracting the video frames at 4 FPS (4 frames per sec-
ond, as similarly done in [33]). In Figure 3 (e), we dis-
play the event number distribution of videos in Env-QA.

1The dataset is available at http://vipl.ict.ac.cn/resources/envqa.
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Figure 3. Statistics of Env-QA dataset.

The videos cover a wide range of difficulties, which con-
tain 1 to 10 events. For the questions, 42% of them are
about videos containing 1 to 4 events, and the rest are about
more complex videos. In Figure 3 (f), we also compare the
answer length distributions of Env-QA and other datasets
which contain open-ended questions. It can be seen that a
large part of the answers in Env-QA contain multiple words.
These answers are mainly describing an event. In Figure 6,
we show some samples in our dataset. More samples and
statistics are shown in Supplementary.

3.4. Evaluation Metrics

As shown in Figure 3 (f), answers in the form of phrases
are common in Env-QA dataset. If using conventional met-
ric [4] to evaluate the answers, it is difficult to precisely
measure the similarity between the ground truth and pre-
dicted answers. For example, “move the pan to countertop”
is closer to the answer “move the plate to countertop” than
“slice the apple”, and it deserves a higher score. Therefore,
inspired by the work of situation recognition [56], Env-QA
evaluates the answers in the role-value format. Specifically,
the answers of Env-QA will involve the following seven
roles: Action (e.g., move, open, etc.), Object1 (the object
being manipulated), Prep. (indicates the position of the ob-
ject, e.g., on, near, etc.), Object2 (Some actions may involve
two objects, e.g., move egg to plate. This role represents the
second object.), Adjective (indicates the attributes or non-

location type states of the objects, e.g., broken, sliced. Ab-
breviated as Adj.), Number, and Yes/No. Every answer in
Env-QA can be mapped into the role-value format, as shown
in Figure 6. Note that some roles could be empty for a spe-
cific answer. This format provides a better evaluation which
part of the answer is wrong. Besides, the accuracy of the
predicted answer can be calculated as an IoU-like score of
the predicted values and the ground-truth values:

s =
|C|

|P ∪G|
(1)

where |P ∪ G| represents the number of roles that is non-
empty in the predicted role set P or ground-truth role set G,
and |C| represents the number of roles that are non-empty
and have equal values in both P set and G set.

4. Method
This section presents the details of TSEA for dynamic

environment understanding. To better extract the environ-
ment information from the events in videos, this model
presents an event-level video representation and multi-step
temporal attention mechanism. Specifically, TSEA is com-
posed of three modules: 1) event-level video feature extrac-
tion module, 2) multi-step temporal attention module, and
3) answer prediction module, as shown in Figure 4.

Event-Level Video Feature Extraction Module. This
module splits the video v into clips and extracts the fea-
ture of each video clip. Specifically, we use Faster R-CNN
model [44] to extract the region features, then feed them
into a temporal CNN [33] to encode the short-time tempo-
ral information into the feature of each frame. The predicted
object names and bounding boxes are also appended to the
corresponding object features, and we obtain the final ob-
ject features {ot1, ...,otN} of each t-th frame, where N in-
dicates the number of objects in the frame. Besides, for the
egocentric videos, the distance between the object i’s center
cti (the coordinate of bounding box center) and the image
center ct naturally expresses its importance. Thus, to make
the model focus more on the key objects, we design a win-
dow function to calculate the attention value αti on each
object oti in the frame (denoted as focus attention):

αti =

{
ϵ, d(cti, ct) < τ
1− ϵ, otherwise

, (2)

where d indicates the Euclidean distance function, ϵ is a
hyper-parameter indicating the attention value, and τ is a
hyper-parameter indicating the size of the focused area in
the image. Then, the frame feature vt is the weighted sum
of object features vt = (αti/Σ

N
i=1αti)oti,

After obtaining the frame features, we design a heuristic
algorithm to segment the video to generate event-level video
features without using the additional segmentation annota-
tions. This algorithm is designed based on the assumption
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Figure 4. Pipeline of our proposed TSEA model. TSEA first extracts the event-level video features, then performs a multi-step temporal
attention on the events, and finally predicts the role-value format answer.

Algorithm 1 Temporal Segmentation of Video
Input: array S[1, ..., T ], where each S[t] is a set whose

members are the names of objects oti, i ∈ {1, ..., N}
satisfying d(cti, ct) < τ ;

Output: array p, of which each element is a segment point
of the video;

1: initial s = 1; p = [];
2: for t = 1 to T do
3: if S[s] ∩ S[s+ 1] ∩ ... ∩ S[t] ∈ ∅ then
4: p.append(t);
5: s = t;
6: end if
7: end for
8: return p;

that when doing one action, the objects in the center of vi-
sual observation are consistent. Specifically, the algorithm
iterates from the start to the end of the frames to find each
longest video clip that the intersection of the object sets in
the image center is not empty, as shown in Algorithm 1. The
algorithm outputs the segment points p of the video. Then,
we convert it to a matrix, A ∈ RT×M , to represent the video
segments, where T indicates the frame number and M in-
dicates the number of events in a video. The element aij
indicates if the i-th frame belongs to j-th event. Specifi-
cally, aij = 1 when i ∈ [pj , pj+1], otherwise the aij = 0.
Then, the feature of each event is calculated as:

ej =
ΣT

t=1atjvt

ΣT
t=1atj

. (3)

Multi-Step Temporal Attention Module. After obtain-
ing the event-level video representation, we design a multi-
step temporal attention mechanism to attend the events
based on the key parts of the question. To encode the text in-
put, we first use GloVe embedding [39] along with GRU to
obtain the features of each word wi in the question. Due to
that the questions sometimes mention multiple events, we
design a two-step self-attention mechanism [20] to obtain
the features of key parts of the question, q1 and q2. Then,
a soft attention mechanism [2] is performed to use q1 and

q2 to locate the event mentioned in the question. The at-
tended event features are denoted as h1 and h2. Finally, we
concatenate the h1, h2, and full question feature q, and use
the concatenated feature to attend the event most related to
answering the question. The finally attended video feature
is denoted as hv .

Answer Prediction Module. We design seven classi-
fication heads to predict the values of seven roles, which
are in the same architecture but different label sizes and pa-
rameters. They take the attended video feature hv and full
question feature q as the inputs, then predict the values, for-
malized as:

P (yi|hv, q) = Softmax(Wi(Wvhv ⊙Wqq)) (4)

where Wi, Wv , and Wq are trainable parameters, yi indi-
cates the values for the i-th role, and ⊙ indicates element-
wise multiplication. Finally, we calculate the cross entropy
loss of all predicted values of roles to train the whole model.
More details of the model are shown in the Supplementary.

5. Experiments
5.1. Baselines

• Q-ONLY: This baseline only uses the question feature as
input to predict the answer.

• I-ONLY: This baseline only uses the visual feature as in-
put to predict the answer.

• CNN-LSTM: This baseline simply concatenates the video
and question feature to generate the answer.

• ST-VQA: ST-VQA [21] is the state-of-the-art model on
TGIF-QA task. ST-VQA introduces a dual-LSTM based
spatio-temporal mechanism to better represent the video
content. Because the model does not support the region
features and the output mechanism is not compatible with
the Env-QA task, we keep the spirit of its attention mech-
anism and modify its input processing and output module.

• STAGE: STAGE [33] is the state-of-the-art model on
TVQA+ task. STAGE proposes a CNN-based frame-
level spatio-temporal attention mechanism on video con-
tent and subtitle. We also make some modifications, e.g.,
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Table 2. Comparison with baseline methods on Env-QA test split. The table shows the accuracy on each type of question and each role.

Model Question Type Accuracy (%) Role Accuracy (%)

Attribute State Event Order Number Overall Action Object1&2 Prep. Adj. Yes/No Number

Q-ONLY 37.29 32.17 24.26 51.79 37.84 32.48 42.05 36.48 51.03 34.15 50.53 37.83
I-ONLY 3.51 3.76 3.56 0.57 2.12 3.05 4.60 7.87 19.42 2.84 0.01 1.08
CNN-LSTM 38.21 42.26 29.94 53.37 38.12 38.05 45.89 43.07 54.15 37.90 43.27 38.07
ST-VQA [21] 41.66 48.98 33.87 54.09 38.54 41.97 45.08 45.06 54.50 41.07 55.44 38.51
STAGE [33] 39.49 49.93 34.52 55.32 37.98 42.53 45.69 47.24 54.35 42.71 52.07 37.66

TSEA 42.96 56.73 39.84 55.53 39.35 47.06 47.61 50.51 55.33 44.93 57.56 39.35

removing the subtitle processing branch, modifying the
output module to adapt to Env-QA.

5.2. Results and Ablations

In Table 2, we show the results of baseline methods and
our proposed model. The Q-ONLY method only reaches a
low-level accuracy, 32.48%, indicating that Env-QA dataset
is relatively balanced and contains limited language priors.
The I-ONLY method is much lower, showing that the vi-
sual content is diverse. The previous state-of-the-art mod-
els on other video question answering tasks achieve at most
42.53% overall accuracy. Our proposed TSEA obtains a
boost over the best of previous methods by 4.5% accuracy.
Still, the overall accuracies of all models are far from satis-
factory, and there is significant headroom remaining.

Besides, from the question type accuracy in Table 2, it
can be seen that compared with the Q-ONLY method, the
state-of-the-art methods and TSEA mainly achieve perfor-
mance improvements in Query Attribute, Event, and State
questions. In contrast, the performance improvements in
Number and Order questions are limited. This shows that
the multi-event reasoning is still quite challenging for the
existing methods. Researchers need to further design more
sophisticated symbolic reasoning mechanisms, e.g., modu-
lar networks, to effectively tackle this difficulty. From the
role-value accuracy in Table 2, we can see that the perfor-
mance gains from introducing visual features are relatively
small on Action role recognition, compared to Object and
Adj. roles. Action role recognition requires the understand-
ing of longer video clips, while Object and Adj. roles may
only need to find the key frames. It shows that understand-
ing concepts related to long-term clips is also difficult.

The Effect of Video Length. In Figure 5, we display
the performances of various methods on Query Event Ques-
tions in different video lengths. We show this type of ques-
tions because it is involved in all lengths of video, and its
answer space is larger, which can better reflect the model’s
performance difference. The video length is measured by
the number of events contained in a video. The perfor-
mance of the Q-ONLY reflects the extent of language priors
that participates in answering questions of different video
lengths. As the video length increases, the language prior
exploited almost continually increases. This is because the

+
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Figure 5. The performances of Query Event Questions on different
lengths of video. The length of a video is measured by the number
of events in it.

questions for short videos usually contain limited informa-
tion that could be used to guess the answer, e.g., “What hap-
pened in the video?”. When the length is too large (video
length > 5), there is a slight decrease. The possible rea-
son is that when the content of a video is much richer, the
answers are more uncertain and harder to guess.

Moreover, it can be seen that as the length of the video
increases, the performance of all vision-based methods de-
creases, and the performance gaps between vision-based
methods and Q-ONLY are shrinking significantly. For the
longest video, almost all models’ performances are close to
the Q-ONLY model. In Figure 6, we display the qualita-
tive results of TSEA model. It can be seen that TSEA fails
at both answering and event attention for videos requiring
long-term tracking (Q5 and Q6). These results show that
existing video QA methods all struggle to extract useful
information from long-time videos. We may need a more
structural video representation to record rich video content.

Ablation. We present an extensive experiment that com-
pares our model TSEA as presented above with its variants
that remove some core modules to determine which com-
ponents are most important. Concretely, we cumulatively
ablate some parts of TSEA, and evaluate them on Env-QA
test split. In Table 3, we display the performances of these
variants. From the results, it can be seen that all components
obtain desired gains, demonstrating they tailor to the chal-
lenges of Env-QA. Besides, the results show that the event
feature, the core of TSEA, contributes the most to perfor-
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Q3: Which thing happened first, opening laptop or moving remote 
control to garbage can?            GT: Opening laptop                 
Predicted Role-Value:

Q4: Where is the remote control, before tidying the sofa?
GT: In the garbage can
Predicted Role-Value:

Q6: What happened, after pushing the soap bar and before using up 
the toilet paper?                    GT: Throwing the cloth
Predicted Role-Value:

Q7: What happened, after putting the pot near sink and before 
filling the pot with water?                         GT: Turning on the faucet
Predicted Role-Value:

Q5: Where is the cloth, before throwing the cloth?     
GT: Near the garbage can
Predicted Role-Value:

Q2: How many books do you see?
GT: 3
Predicted Role-Value:

find Bowl

find Bed find Book

throw Cloth make Cloth dirty

put Pot near Sink

Turn on Faucet

fill Pot with water

Q1: What color is the bowl?
GT: Blue
Predicted Role-Value:

find CD open Laptop

turn on Floor Lamp tidy Sofa

move Remote Control to Garbage Can

Q8: Is the faucet turned off, before moving pot to stove? 
GT: No
Predicted Role-Value:

move Pot to Stove

push Soap Bar

Role Action Object1 Prep. Object2 Adj. Number Yes/No

Value - - - - blue --

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value - sink in - - --

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value move soap bar to sink - --

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value turn on faucet - - - --

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value - - - - - No-

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value - garbage can in - - --

Role Action Object1 Prep. Object2 Adj Number Yes/No

Value open laptop - - - -

Role Action Object1 Prep. Object2 Adj. Number Yes/No

Value - - - - - -2

use up Toilet Paper move Cloth to Sink

Figure 6. Example predictions from TSEA. We display some key frames in example videos and provide corresponding questions, ground-
truth answers (denoted as GT), and predicted role-value answers. The larger images on the right side are the frames in the attended events
predicted by TSEA.

mance.
Generalization on Unseen Environments. As illus-

trated in Section 3.3, the test split videos of Env-QA have
two parts, one part is collected in the same environments
as the training set, and the other part is collected in un-
seen environments. In Table 3, we display the performances
of methods on seen environments and unseen environments
separately to analyze the generalization ability on unseen
environments. It can be found that the performances of
questions about unseen environments are quite similar to
that of the questions about seen environments. This shows
that at the level of visual understanding, the generalization
performance of current framework is relatively promising.
It may be because the current feature extractor, which is pre-
trained on diverse large-scale web data, is strong enough for
handling the cross-environment generalization in Env-QA
task. More results are shown in Supplementary.

6. Conclusion
In this paper, we propose a new video question answer-

ing task for the understanding of the dynamic environments
and correspondingly construct a large-scale dataset. The
proposed task requires intelligent systems to watch a video
about exploring and interacting in an environment, then ex-
tract useful information and perform temporal reasoning to
answer the questions. We further propose a novel video
QA method with event-level video representation, TSEA, to
deal with above task. Comprehensive experiments demon-
strate the effectiveness of the TSEA. Besides, the results

Table 3. Cumulative ablation of TSEA network on test split. The
ablations of table rows are cumulative from top to bottom.

Model Accuracy (%)
Seen Env. Unseen Env. Overall

TSEA 46.85 47.20 47.06
− Multi-Step Attention 45.41 45.60 45.46
− Event Feature 43.05 43.61 43.39
− Focus Attention 41.84 41.79 41.80
− Object Name Feature 41.05 40.32 40.60

reveal the main challenges of Env-QA task for current mod-
els: 1) The lower accuracies on Query Event, Number ques-
tions show the limitations of models on performing tempo-
ral reasoning on multiple events. 2) Unsatisfactory results
on long videos indicate the formidable challenge of tracking
objects’ states for a long time. All these imply that some
innovative ideas need to be explored, e.g., environment-
level representation (like 3D scene graphs), a more pow-
erful event feature extractor (like video Transformer), or a
symbolic temporal reasoning mechanism (like modular net-
work). We hope Env-QA can empower the researches of
understanding dynamic environments and help to move the
fields of video analysis, QA, and embodied AI forward.
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